Ветеринарный энциклопедический словарь
Главная - Ветеринарный энциклопедический словарь - буква М - МИКРОСКОП |
МИКРОСКОП (от греч. mikros — маленький и skopeo —смотрю) , оптич. прибор для получения увеличенных изображений объектов, невидимых невооружённым глазом. Необходимость использования М. обусловлена невысокой разрешающей способностью человеческого глаза, к-рый на расстоянии наилучшего видения (250 мм) может воспринимать две точки (линии) раздельно, если они расположены друг от друга не ближе, чем на 0,08—0,2 мм. Размеры микроорганизмов, клеток, кристаллов и т. п. значительно меньше этих величин. Для их изучения и предназначен М., к-рый даёт возможность различать структуры с расстоянием между элементами (т. е. обладает разрешением) ок. 0,2 мкм. |
В зависимости от природы света и оптич. эффектов, формирующих изображение, различают М., предназначенные для наблюдения в видимых, ультрафиолетовых и инфракрасных лучах; имеется и электронный микроскоп. Характерный пример М.—биол. М. серии “Биолам” (рис. 1). Механич. часть представлена основанием, укреплённой на нём коробкой с механизмом микрометрич. фокусировки, к к-рой прикреплены сменные предметные столики и тубусодержатель с механизмом грубой фокусировки.В верхней части тубусодержателя укреплена головка с револьвером и гнездом для моно- или бинокулярной визуальной насадки.Оптич. часть М. состоит из осветит. аппарата (зеркало, конденсор), объективов и окуляра. Зеркало устанавливают под конденсором, к-рый укрепляется кронштейном на направляющей коробке под предметным столиком. Объективы ввинчиваются в отверстия с резьбой револьвера, окуляры вставляются в верхнюю часть тубуса. М. оснащаются конденсорами КОН-3 с апертурой 1,2 или ОИ-14 с апертурой 1,4, максим. значение к-рых достигается масляной иммерсией. М. серии “Виолам” подразделяются на дорожные, студенческие и рабочие. |
Изображение в М. формируется след. образом (рис. 2). Концентрированные при помощи конденсора лучи света попадают на объект и, отражаясь от него, преломляются линзами объектива, создавая перевёрнутое увеличенное действительное изображение объекта. После дополнит. увеличения верхней линзой окуляра образуется мнимое изображение объекта, к-рое воспринимается глазом наблюдателя как действительное и как бы расположенное на плоскости между зеркалом и конденсором. |
Общее увеличение М. определяется произведением увеличений,обеспечиваемых объективом и окуляром. Поскольку М. оснащены объективами, имеющими увеличение от 8 до 90, и окулярами с увеличением от 5 до 20, макс. общее увеличение их может достигать 1800. При обычной световой микроскопии следует учитывать числовую апертуру, к-рой определяется разрешающая способность М., и степень исправленности аберрации и кривизны поля объективов. Величина апертуры возрастает с ростом показателя преломления среды между объектом и объективом, поэтому и применяется иммерсионный метод: берётся среда с большим показателем преломления (масляный р-р). В этом случае и апертура, и разрешающая способность больше, а предел разрешения меньше. Числовые апертуры объективов в воздушной среде составляют ок. 0,9, в масляной — ок. 1,3. Чтобы избежать получения окрашенного изображения объекта, используют частично (ахроматы) или почти полностью (апохроматы) исправленные от аберраций объективы, а для получения равномерно резкого изображения всего объекта, что особенно важно при микрофотографировании, планхроматы или планапохроматы. В последнем случае вместо обычного окуляра применяют гомали, к-рые дополнительно исправляют кривизну, или компенсационные окуляры. Окуляры Гюйгенса используют с ахроматич., обычно неиммерсионными, объективами. |
Смещением апертурной диафрагмы конденсора достигается косое освещение, подчёркивающее рельеф объекта за счёт теней. Если центр светопольного конденсора закрыть минимум на 2/з между зеркалом и конденсором. |
Общее увекружком черной бумаги, можно получить эффект тёмного поля, при к-ром микроскопич. структуры видны в виде светлых изображений на тёмном фоне. На этом же принципе устроены темнопольные конденсоры, напр. типа ОИ-13 (рис. 3). Центральная часть их закрыта непроницаемым диском, поэтому выходящий из конденсора в виде полого конуса свет не попадает непосредственно на объект. Отличающиеся от окружающей среды по показателям преломления структуры высвечиваются рассеянными лучами. Применяя вместо обычной ирисовой апертурной диафрагмы конденсора кольцевую диафрагму и объектив с фазовой пластинкой и фазовым кольцом, получают изображения прозрачных и бесцветных объектов, невидимых при обычной микроскопии (фазовый контраст). Принцип метода состоит в выявлении сдвигов фазы световых колебаний, к-рые возникают, когда свет проходит сквозь структуру, имеющую преломления, отличающиеся от показателя преломления окружающей среды. Производимые в СССР фазовоконтрастные устройства типа КФ-4 и КФ-5 применяются для контрастирования живых и неживых объектов (рис. 4). |
Увеличив диаметр кольца фазовой пластинки,получают фазово-темнопольные объективы, пропускающие незначит. часть света, за счёт чего обеспечивается фазово-темнопольный, или анопгральный, контраст (аноп-тральная микроскопия). Конструкция интерференционного М. предусматривает раздвоение входящего луча, пропускание одного из полученных лучей через объект, а другого — мимо него, воссоединение и интерференцию их между собой. Разность хода лучей в М. измеряется компенсатором. Интерференционную микроскопию используют для качеств. и количеств. характеристики неокрашенных объектов. Поляризационный М. отличается наличием анализатора, к-рый анализирует изменённый или отражённый объектом и предварительно поляризованный поляризатором свет осветителя. Поляризационная микроскопия используется для исследования оптич. свойств неокрашенных объектов. Имеются комбинированные интерференционно-поляризационные М. типа MPI-5 (рис. 5), Принцип действия люминесцентного М. основан на использовании явления флюоресценции объектов, к-рая возникает под действием коротковолнового излучения (освещение сине-фиолетовым светом), что обеспечивает получение чёткой желто-зелено-оранжевой флюоресценции объектов на тёмном фоне поля зрения. |
Достигается это благодаря набору светофильтров,устанавливаемых за источником света, и фильтров, расположенных перед окуляром. Люминесцентные М. серии МЛ-1 и МЛ-2 (рис. 6) позволяют наблюдать объект при освещении сверху и в проходящем свете, а также при смешанном освещении в комбинации с фазово-контрастным устройством и конденсатором тёмного Микроскопия , Микроскопическая техника . поля. Один из вариантов МЛ-2 (МЛ-2в) и МЛ-3 снабжены флюориметрич. насадкой; МЛ-4 — спец. микроскоп-флюориметр. М. серии “ЛЮМОМ” (рис. 7) снабжены набором сменных светоделительных пластин, с помощью к-рых можно проводить также флюориметрию (тип И-2) и изучать объекты по методам аноптрального контраста и контактной микроскопии (тип И-3). См. такжеЛит.: Федин Л. А., Микроскопы, принадлежности к ним и лупы, М., 1961; Пешков М. А., Милютин В. Н., Световой микроскоп, основы работы с ним и его разновидности, в кн.: Руководство по микробиологической диагностике инфекционных болезней, 2 изд., М., 1973. |